(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(f(x)) → f(x)
f(s(x)) → f(x)
g(s(0)) → g(f(s(0)))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(f(x)) → f(x)
f(s(x)) → f(x)
g(s(0')) → g(f(s(0')))
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
f(f(x)) → f(x)
f(s(x)) → f(x)
g(s(0')) → g(f(s(0')))
Types:
f :: s:0' → s:0'
s :: s:0' → s:0'
g :: s:0' → g
0' :: s:0'
hole_s:0'1_0 :: s:0'
hole_g2_0 :: g
gen_s:0'3_0 :: Nat → s:0'
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f,
gThey will be analysed ascendingly in the following order:
f < g
(6) Obligation:
Innermost TRS:
Rules:
f(
f(
x)) →
f(
x)
f(
s(
x)) →
f(
x)
g(
s(
0')) →
g(
f(
s(
0')))
Types:
f :: s:0' → s:0'
s :: s:0' → s:0'
g :: s:0' → g
0' :: s:0'
hole_s:0'1_0 :: s:0'
hole_g2_0 :: g
gen_s:0'3_0 :: Nat → s:0'
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
The following defined symbols remain to be analysed:
f, g
They will be analysed ascendingly in the following order:
f < g
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
f(
gen_s:0'3_0(
+(
1,
n5_0))) →
*4_0, rt ∈ Ω(n5
0)
Induction Base:
f(gen_s:0'3_0(+(1, 0)))
Induction Step:
f(gen_s:0'3_0(+(1, +(n5_0, 1)))) →RΩ(1)
f(gen_s:0'3_0(+(1, n5_0))) →IH
*4_0
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
f(
f(
x)) →
f(
x)
f(
s(
x)) →
f(
x)
g(
s(
0')) →
g(
f(
s(
0')))
Types:
f :: s:0' → s:0'
s :: s:0' → s:0'
g :: s:0' → g
0' :: s:0'
hole_s:0'1_0 :: s:0'
hole_g2_0 :: g
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
f(gen_s:0'3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
The following defined symbols remain to be analysed:
g
(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol g.
(11) Obligation:
Innermost TRS:
Rules:
f(
f(
x)) →
f(
x)
f(
s(
x)) →
f(
x)
g(
s(
0')) →
g(
f(
s(
0')))
Types:
f :: s:0' → s:0'
s :: s:0' → s:0'
g :: s:0' → g
0' :: s:0'
hole_s:0'1_0 :: s:0'
hole_g2_0 :: g
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
f(gen_s:0'3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_s:0'3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
(13) BOUNDS(n^1, INF)
(14) Obligation:
Innermost TRS:
Rules:
f(
f(
x)) →
f(
x)
f(
s(
x)) →
f(
x)
g(
s(
0')) →
g(
f(
s(
0')))
Types:
f :: s:0' → s:0'
s :: s:0' → s:0'
g :: s:0' → g
0' :: s:0'
hole_s:0'1_0 :: s:0'
hole_g2_0 :: g
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
f(gen_s:0'3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_s:0'3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
(16) BOUNDS(n^1, INF)